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SAMPLE	VCE	METHODS		
EXAM	1	&	EXAM	2	

SOLUTIONS		
	

	
	
	

	



	

EXAM	1	SOLUTIONS	

	

	

Question	1	

	

a. 		

8 = :
;
− 1

=

;	

>8

>:
=
1

2
:
;
− 1

@
=

;×2:	

=
2:

2 :; − 1	
	

=
:

:; − 1	
	

	

	

	

b. 		

C′ : =
EF′ − E′F

E;
	

=
1 + sin : − : cos :	

1 + sin : ;
	

C
I
J =

1 + sin J − J cos J

1 + sin J ;
	

= 1 + J	

	

Question	2	

	

a. 	

C : = 	 :
=

; − :
;
>:	

=
:
K

;

3

2

−
:
K

3
+ M	

=
2:

K

;
	

3
–
:
K

3
+ M		

Since	C 3 = 2,	

2 =
2×3

K

;
	

3
–
3
K

3
+ M	

2 = 2 3 − 9 + M	

M = 11 − 2 3		

Therefore	

C : =
2:

K

;
	

3
–
:
K

3
+ 11 − 2 3		

	

	

	

	

	

	

	

1M	

1A	

1M	

1A	

1A	

1M	

1M	

1A	



b. 	

2cos 2: − sin 3:

T

K

T

U

>: = sin 2: −
1

3
cos 3:

T

U

T

K

		

= sin
2J

3
−
1

3
cos J − sin

J

2
+
1

3
cos

3J

4
		

=
3

2
+
1

3
− 1 −

2

6
	

=
3

2
−

2

6
−
2

3
	

	

Question	3	

a. 		

>8

>:
= −

sin :

cos :
	

= − tan(:)	

	 	

	

b. 		

5 tan :

T

K

[

>: = 5 −
>8

>:

T

K

[

>:	

																							= −5
>8

>:

T

K

[

>:	

																																		= −5 log^ cos : [

T

K
	

																																																																			= −5 log^ cos
J

3
− log^ cos 0 	

																																													= −5 log^

1

2
− log^ 1 	

															= 5 log^ 2 	

	

Question	4	

	

a. 		

Pr −a ≤ c ≤ a = 1 − 2d	

	

	

	

b. 		

Pr c ≥ −a c ≤ a =
Pr −a ≤ c ≤ a

Pr c ≤ a
	

																			=
1 − 2d

1 − d
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Question	5	

	

a. Let	f	be	the	total	number	of	heads	obtained	when	the	coin	is	tossed	j = 5	times.	

Then	f~Bi 5,
=

;
.	Therefore,		

Pr f ≥ 1 = 1 − Pr f = 0 	

																					= 1 −
1

2

m

	

																					=
31

32
	

b. 		

Pr f ≥ 1 f ≤ 4 =
Pr 1 ≤ f ≤ 4

Pr f ≤ 4
	

=
1 − Pr f = 0 − Pr f = 5

1 − Pr f = 5
	

=

1 −
1

2

m

−
1

2

m

1 −
1

2

;
	

=
30

31
	

	

Question	6	

	

a. 		

E f = 1	

1

2
+
a

4
+
d

4
= 1	

a

4
+
d

4
=
1

2
	

a + d = 2	

b. 		

E f
;
− E f

;
= 1	

1

2
+
a
;

4
+
d
;

4
− 1

;
= 1	

a
;

4
+
d
;

4
=
3

2
	

a
;
+ d

;
= 6	

	

c. 	Substitute	d = 2 − a	into	a
;
+ d

;
= 6	to	get	

	

a
;
+ 2 − a

;
= 6	

a
;
+ 4 − 4a + a

;
= 6	

2a
;
− 4a − 2 = 0	

a
;
− 2a − 1 = 0	

a
;
− 2a + 1 − 2 = 0	

a − 1
;
= 2	

a = 1 ± 2	

If	a = 1 + 2	then	d = 1 − 2,	which	is	impossible	since	d > a.	Therefore,	

	

a = 1 − 2	and	d = 1 + 2.	
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Question	7	

	

a. Let	F = 10r	and	E = s
@t
.	Therefore,	

	

u
I
r = F

I
E + E

I
F	

																							= 10s
@t
− 10rs

@t
	

																		= 10s
@t
(1 − r)	

	

b. The	concentration	is	a	maximum	when	u
I
r = 0.	Therefore,		

	

u
I
r = 0	

10s
@t
1 − r = 0	

r = 1	

since	10s
@t
≠ 0.	

	

	

Question	8	

	

Pr f = 5	 	f ≥ 4) =
1

3
	

Pr f = 5	and	f ≥ 4

Pr f ≥ 4
=
1

3
	

Pr f = 5

Pr f = 4 + Pr f = 5
=
1

3
	

y
m

muUy
U 1 − y + ym				

=
1

3
	

y
m

5yU 1 − y + ym
=
1

3
	

y
m

yU 5 1 − y + y
=
1

3
	

y

5 − 4y
=
1

3
	

3y = 5 − 4y	

y =
5

7
	

	

Question	9	

	

a. If	a = 0,	then	C : = −4: + 1	will	be	one-to-one.	Therefore,	it	has	an	inverse.		

			

If	a ≠ 0,	then	the	function	is	a	quadratic	with	turning	point		

:}~ = −
�

;Ä
=

U

;Ä
=

;

Ä
.	

	

The	turning	point	cannot	lie	in	the	interval	(−1,1).		

	

If	
;

Ä
≤ −1	then	a ∈ [−2,0).	

If	
;

Ä
≥ 1	then	a ∈ (0,2].		

	

Combining	the	answers,	the	function	will	have	an	inverse	for	a ∈ [−2,2].	
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b. The	function	C	will	be	one	to	one	provided	C
I
: ≥ 0	for	all	:.	We	have,	

C
I
: = 6:

;
− 2Ü: + 2	

We	want	for	C
I
: = 0	to	have	at	most	one	solution.	Therefore,	

																		

																					Δ ≤ 0	

							d
;
− 4aM ≤ 0	

−2Ü
;
− 48 ≤ 0	

										Ü
;
− 12 ≤ 0	

	 Therefore,	

− 12 ≤ Ü ≤ 12	

	

	

EXAM	2,	SECTION	1	

	

	

	 	

Question	1	 	 	

	

Since	

:}~ = −
d

2a
= −

2Ü

2
= −Ü	

and	

8}~ = −Ü
;
+ 2Ü −Ü + 3Ü

;
= 2Ü

;
.	

	

Therefore,	2Ü
;
= 18 ⟹ Ü = ±3.	

	

Question	2	

	

Solve	

	

: = s
â@=

+ 1	

: − 1 = s
â@=	

8 = 1 + log^(: − 1)	

C
@=

: = 1 + log^(: − 1)	

	

Also,	dom C
@=

= ran C = 2, s
;
+ 1 .			

	

Question	3	 	

	

:
I
= −: + 4 ⟹ : = 4 − :

I
	

8
I
= 38 − 3 ⟹ 8 =

8
I
+ 3

3
	

	

Therefore	8 = 4 cos(2:) + 2	becomes		

	

8
I
+ 3

3
= 4 cos 2 4 − :

I
+ 2	

8
I
= 12 cos 2 4 − :

I
+ 3	

	

Therefore	the	range	is	 3 − 12,3 + 12 = [−9,15].		
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Question	4	 	 	

	

If		

8 = C 2: + 6 = C(2(: + 3))	

	

is	translated	by	one	unit	to	the	right	then	the	rule	becomes	

	

8 = C 2 : − 1 + 3 = C(2: + 6).	

	

Question	5	 	 	

	

The	area	above	the	axis	cancels	the	area	beneath	the	axis.	Therefore,		

	

3:
;
− 3

Ä

[

>: = 0	

:
K
− 3: [

Ä
= 0	

a
K
− 3a = 0	

a a
;
− 3 = 0	

a = 0,± 3	

	

Since	a > 0,	we	must	have	a = 3.	

	

Question	6	 	 	

	

Since	 sin :
T

[
>: = 2,	we	must	have	Ü = 5.5J =

==T

;
,	as	shown	below.		

	

	

	

Question	7	 	 	

	

Since	ã = 1,	we	have	
Ä×;

;
= 1.	Therefore	a = 1.	By	symmetry,	E f =

Ä

;
=

=

;
.	
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Question	8	 	 	

	

Pr at	least	one	of	each = 1 − Pr ååå − Pr ççç 	

= 11 −
3

8

2

7

1

6
−
5

8

4

7

3

6
	

=
45

56
	

	

=
45

56
	

	

Question	9	 	 	

	

Let	j	be	the	number	of	boys	in	the	group.	Then	

	

Pr çç =
7

15
	

j

j + 3

j − 1

j + 2
=
7

15
		

Solve	for	j > 0	to	get	j = 7.		

	

Question	10	 	 	

	

Since	

y + y + 3y +
1

6
= 1	

5y =
5

6
	

y =
1

6
	

We	have	

é f = 1 ⋅
1

6
+ 2 ⋅

1

2
+ 3 ⋅

1

6
=
1

6
+ 1 +

1

2
=
5

3
.	

	

Question	11	 	 	

	

Note	that	C	will	have	an	inverse	if	and	only	if	C
I
: ≥ 0	for	all	:.	Since	C

I
: = 3:

;
+

2Ü: + 3,	we	require	that	this	quadratic	have	at	most	one	:-intercept.	That	is,	

Δ = d
;
− 4aM = 4Ü

;
− 36 ≤ 0	

Therefore	−3 ≤ Ü ≤ 3.	

	

Question	12	 	 	

	

Since		

>8

>:
= s

;ê
2: + 2a + 1 ,	

and	
ëâ

ëê
= 0	when	: = −1,	we	have	that		

s
@;

−2 + 2a + 1 = 0	

a =
1

2
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Question	13	 	 	

	

Using	similar	triangles,		

8

3 − :
=
4

3
⟹ 8 =

12 − 4:

3
	

	

Therefore	

ã = :8 =
4

3
:(3 − :)	

has	a	maximum	at	: =
K

;
.	Therefore		

ã =
U

K

K

;
3 −

K

;
= 3.	

	

	

Question	14	 	 	

	

Pr f < 4 f > 2 =
Pr 2 < f < 4

Pr f > 2
=
1/3

2/3
=
1

2
	

	

Question	15	 	 	

	

2 C :

T

[

>: + a cos
:

2

T

[

>: = 10	

4 + a 2 sin
:

2 [

T

= 10	

2a sin
J

2
= 6	

a = 3	

	

Question	16	 	 	

	

We	have	
ëâ

ëê
=

;Ä

;ê@=
.	At	: = 1,		

	

î =
>8

>:
= 2a				and				8 = a log^(2 − 1) + 1 = 1.	

	

Therefore	the	equation	of	the	tangent	is	

	

8 − 1 = 2a : − 1 .	

	

Let	: = 8 = 0	so	that	−1 = −2a.	Therefore	a =
=

;
.		

	

Question	17	 	 	

	

Since	f~ç 15,
K

U
	and	y =

ï

=m
	we	have	

Pr y ≥
2

3
= Pr

f

15
≥
2

3
	

= Pr f ≥ 10 	

= 0.6865.	
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Question	18	 	 	

	

Note	that	C
I
: =

Ä

; ê
−

�

; êñ
	

	

C 1 = 1 ⟹ 1 = a + d	

C
I
1 = 0 ⟹ 0 =

a

2
−
d

2
	

	

Solve	these	equations	to	give	 a, d =
=

;
,
=

;
.	

	

Question	19	 	 	

	

Note	that	ran ó = [M,�).		
Since	C : = :

;
− 2: − 8 = (: − 4)(: + 2),	we	require	that	M > 4.		

	

Question	20	 	 	

	

The	area	of	the	rectangle	is	

	

ã = FE	

= Fs
@ò
	

ã
I
= −Fs

@ò	
+ s

@ò	
	

= s
@ò
(1 − F)	

	

If	ã
I
= 0	then	F = 1	and	ã = 1×s

@=
= s

@=
.	

	

	

	

EXAM	2,	SECTION	2	

	

	

	

Question	1	

	

	

a. 		

a

: + 1

=

[

>: = 1	

a log^ : + 1 [
=
= 1	

a log^ 2 − log^ 1 = 1	

a =
1

log^ 2
	

		

	

b. 		

E f =
a:

: + 1

=

[

>: =
1

log^ 2

:

: + 1

=

[

>: = 0.44	hours	

	

	

	

E	

D	

C	
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c. 		

1

log^ 2

1

: + 1

ö

[

>: =
1

2
	

î = 0.41		hours	

	

	

d. 			

1

log^ 2

1

: + 1

=

õ

>: = 0.2	

Ü = 0.7411	hrs	

= 44.47	min	

	

e. 			

a

: + 1

[.m

[

>: = 0.58	

	

	

	

	

f. 		

Pr f > 0.25 f < 0.5 =
Pr 0.25 < f < 0.5

Pr f < 0.5
	

= 0.45	

	

g. Let	ú	be	the	number	of	times	that	the	wait	time	is	less	than	30	minutes.		

Then	ú~ç(7,0.58)	and		

Pr ú = 4 = 0.29.		

	

	

h. 	y =
ùûU

;[[[
= 0.382		

	

i. First	find	Ü	such	that	

	

Pr −Ü < c < Ü = 0.99	

Pr c < Ü = 0.995	

Ü = 2.5758	

	

Then	

† =
y(1 − y)

j
=

0.382(1 − 0.382)

2000
= 0.01086	

	

Then	

	

99%	CI = y − Ü†, y + Ü† = (0.35,0.41)	
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Question	2	

	

a. 	Since	

C′ : =
27

aU
:(2a − 3:)	

	

	 if	C
I
: = 0	then	: =

;Ä

K
		and	C

;Ä

K
=

U

Ä
.		Therefore,	¢	has	coordinates	

	

2a

3
,
4

a
	

	

	

b. Area = a×
U

Ä
= 4	

	

c. 	Since		

	

ã =
27

aU
:
;
(a − :)

Ä

[

>: =
9

4
	

	 Therefore,	

	

Fraction	shaded =

9

4

4
=
9

16
.	

	

	

d. 	

	

shape	 	 turning	point	 	 endpoints	

	

	

e. The	gradient	î	of	the	curve	is	given	by	

	

	

C′ : =
1

8
12: − 3:

;
	

1M	

1A	

1A	

1A	

1M	

1A	1A	1A	



= −
3

8
:
;
− 4: 	

= −
3

8
: − 2

;
− 4 	

= −
3

8
: − 2

;
+
3

2
	

	

The	gradient	has	a	maximum	at	: = 2.	When	: = 2,	C 2 =
=

£
×4×4 = 2.	

Therefore	

	

î = 2					and				j = 2		

	

f. 	Since	

ℎ : = ó : + 2 − 2	

=
1

8
: + 2

;
6 − : + 2 − 2	

=
3:

2
−
:
K

8
	

	

	 Therefore,		

	

ℎ −: =
3 −:

2
−
:
K

8
	

= −
3:

2
+
:
K

8
	

= −ℎ(:)	

	

	

	

	

	

Question	3	

	

a. Since	ã	~	N(502,2),	

	

Pr ã < M = 0.99	

M = 506.65	

	

b. Pr(ã < 497) = 0.0062.		

	

c. Since	ç	~	N(•, †),	

	

Pr ç > 507 = 0.15	

Pr ç ≤ 507 = 0.85	

507 − •

†
= 0.85	

	 	

Pr ç < 498 = 0.02	

498 − •

†
= 0.02	
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Solving	these	two	equations	gives	

	

• = 503.98			and			σ = 2.91	

	

	

d. Pr(ç < 497) = 0.0083	

	

e. 		

y 0.0062 + 1 − y 0.0083 = 0.007	

y = 0.619	

≈ 62%	

	

	

Question	4	

	

a. :
;
= : ⟹ : = 1, 8 = 1.	The	coordinates	are	(1,1).		

	

b. : − :
;=

[
>: =

=

K
.	

	

c. 2×
=

K
=

;

K
	

	

d. =

U
−

=

U

;

=
=

;
−

=

=û
=

ù

=û
	

	

e. 	The	vertical	separation	is	given	by	

> Ü = Ü − Ü
;
	

>
I
Ü =

1

2 Ü
− 2Ü	

When	>
I
Ü = 0	we	have	

1

2 Ü
− 2Ü = 0	

Ü =
1

2
U

K

	

	

f. ® = Ü, Ü 	

When	 : = Ü
;
⟹ : = Ü

U
	

	 Therefore,	© = (Ü
U
, Ü

;
).		

	

g. 	ã Ü =
=

;
Ü − Ü

U
Ü − Ü

;
	

Minimise	using	CAS	

	 Ü = 0.53	

	

h. Solve	

8 = :
;
	

8 + : = M	

	 for	(:, 8)	using	CAS.		

:	 =
1

2
, 8	 = 	

1

4
	

	 Therefore	
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1M	 1A	

1A	

1A	
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™ =
1

2
,
1

4
			and				´ =

1

4
,
1

2
	

	

	

	 	

	

The	area	will	then	be		

: − :
;

=

U

[

>: +
3

4
− : − :

;

=

;

=

U

>: =
13

96
	

	

	

i. If	´ = (Ü, Ü)	then	™ = Ü, Ü 	(Since	C	and	ó	are	the	inverses	of	each	other)	

Since	the	bounded	area	is	
=

K
,	half	of	the	the	area	is	

=

û
.	Therefore,		

	

: − :
;

õ

[

>: +
1

2
Ü + Ü Ü − Ü − :

;

õ

õ

>: =
1

6
	

	

Solving	for	Ü	gives	Ü = 0.31467.	Since	(Ü, Ü)	is	on	the	line	: + 8 = M,	we	have,		

	

M = Ü + Ü = 0.88	
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